Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Streptococcus pneumoniae is a major cause of disease, especially in developing countries, and cost-effective alternatives to the currently licensed vaccines are needed. We constructed DNA vaccines based on pneumococcal surface protein A (PspA), an antigen shown to induce protection against pneumococcal bacteremia. PspA fragments can be divided into three families, which can be subdivided into six clades, on the basis of PspA amino acid sequence divergence (S. K. Hollingshead, R. Becker, and D. E. Briles, Infect. Immun. 68:5889-5900, 2000). Since most clinical isolates belong to family 1 or family 2, PspA fragments from members of both of these families were analyzed. Vectors encoding the complete N-terminal regions of PspAs elicited significant humoral responses, and cross-reactivity was mainly restricted to the same family. DNA vaccines encoding fusions between PspA fragments from family 1 and family 2 were also constructed and were able to broaden the cross-reactivity, with induction of antibodies that showed reactions with members of both families. At least for the pneumococcal strains tested, the cross-reactivity of antibodies was not reflected in cross-protection. Animals immunized with DNA vaccines expressing the complete N-terminal regions of PspA fragments were protected only against intraperitoneal challenge with a strain expressing PspA from the same clade.

Original publication

DOI

10.1128/IAI.70.9.5086-5090.2002

Type

Journal article

Journal

Infect Immun

Publication Date

09/2002

Volume

70

Pages

5086 - 5090

Keywords

Animals, Antibodies, Bacterial, Antigens, Bacterial, Bacterial Proteins, Base Sequence, Cloning, Molecular, Cross Reactions, DNA, Bacterial, Female, Immunization, Immunoglobulin G, Mice, Mice, Inbred BALB C, Peptide Fragments, Pneumococcal Infections, Pneumococcal Vaccines, Streptococcus pneumoniae, Vaccines, DNA