Advances in antiviral therapy have dramatically shifted the demographics of pediatric human immunodeficiency virus type 1 (HIV-1) infection in the developed world, and a growing proportion of perinatally HIV-1-infected children are now entering their second or even third decade of life. Although cellular immune responses to HIV are known to be weak in early infancy, the magnitude, breadth, and specificity of responses later in childhood have not been characterized in detail. We performed a comprehensive characterization of HIV-1-specific CD8 responses in 18 perinatally infected children (age range, 6 to 17 years), most of whom were on antiviral therapy, using both previously defined HIV-1 epitopes and overlapping peptides spanning all HIV-1 proteins. Multispecific responses were detected in all subjects and accounted for a median of 0.25 to 0.3% of all peripheral blood mononuclear cells that was similar to the magnitude seen in HIV-infected adults. CD8 responses were broadly directed at an average of 11 epitopes (range, 2 to 27 epitopes) and targeted nearly all HIV-1 proteins, with the highest proportion in Gag. Responses were readily detected even in those children with suppressed viremia on highly active antiretroviral therapy, although the breadth (P = 0.037) and the magnitude (P = 0.021) were significantly lower in these subjects. Each child recognized only a small minority of the HIV-1 optimal epitopes defined for his or her class I HLA alleles. Together, these data indicate that perinatally infected children who survive infancy mount a robust HIV-1-specific CD8 response that is much stronger than previously thought and is comparable in magnitude and breadth to that of adults. Moreover, this response has the potential to be broadened to target more epitopes, making these children attractive candidates for immunotherapeutic interventions.

Type

Journal article

Journal

J Virol

Publication Date

07/2003

Volume

77

Pages

7492 - 7501

Keywords

Adolescent, Amino Acid Sequence, Base Sequence, CD8-Positive T-Lymphocytes, Child, DNA Primers, Epitopes, Female, HIV Infections, HIV-1, Humans, Infectious Disease Transmission, Vertical, Male, Molecular Sequence Data, Viremia