BACKGROUND: Dengue virus (DENV) infection is prevalent across tropical regions and may cause severe disease. Early diagnosis may improve supportive care. We prospectively assessed the Standard Diagnostics (Korea) BIOLINE Dengue Duo DENV rapid diagnostic test (RDT) to NS1 antigen and anti-DENV IgM (NS1 and IgM) in children in Cambodia, with the aim of improving the diagnosis of DENV infection. METHODOLOGY AND PRINCIPAL FINDINGS: We enrolled children admitted to hospital with non-localised febrile illnesses during the 5-month DENV transmission season. Clinical and laboratory variables, and DENV RDT results were recorded at admission. Children had blood culture and serological and molecular tests for common local pathogens, including reference laboratory DENV NS1 antigen and IgM assays. 337 children were admitted with non-localised febrile illness over 5 months. 71 (21%) had DENV infection (reference assay positive). Sensitivity was 58%, and specificity 85% for RDT NS1 and IgM combined. Conditional inference framework analysis showed the additional value of platelet and white cell counts for diagnosis of DENV infection. Variables associated with diagnosis of DENV infection were not associated with critical care admission (70 children, 21%) or mortality (19 children, 6%). Known causes of mortality were melioidosis (4), other sepsis (5), and malignancy (1). 22 (27%) children with a positive DENV RDT had a treatable other infection. CONCLUSIONS: The DENV RDT had low sensitivity for the diagnosis of DENV infection. The high co-prevalence of infections in our cohort indicates the need for a broad microbiological assessment of non-localised febrile illness in these children.

Original publication

DOI

10.1371/journal.pntd.0003424

Type

Journal

PLoS Negl Trop Dis

Publication Date

02/2015

Volume

9

Keywords

Algorithms, Cambodia, Child, Child, Preschool, Dengue, Dengue Virus, Diagnostic Tests, Routine, Female, Fever, Humans, Immunoglobulin M, Infant, Male, Prevalence, Prospective Studies, Reagent Kits, Diagnostic, Republic of Korea, Sensitivity and Specificity, Viral Nonstructural Proteins