Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

A new technique allowing drugs or vaccines to be encapsulated within tiny biodegradable particles could see an end booster jabs

Multiple injections for vaccinations could become a thing of the past, according to scientists who have developed an approach for delivering many doses of different substances in just one jab.

The technology involves encapsulating drugs or vaccines within tiny particles made of biodegradable polymers. Depending on their makeup, these polymers break down at different points in time, releasing their contents into the body.

Researchers say the approach could allow multiple vaccines to be delivered at once and remove the need for booster jabs. It may also prove handy in treatments for allergies, diabetes and even cancer where multiple injections are needed.

Researchers say it could prove valuable in developing countries, potentially allowing all childhood vaccines and their boosters to be given in one shot.

“One of the main limitations there is access to vaccines and the fact that you have to come back several times in order to get immunity from the pathogen,” said Ana Jaklenec, co-author of the research from the Massachusetts Institute of Technology. “A child or a baby is usually seen once, sometime around the birth time by some sort of healthcare worker.”

Writing in the journal Science, Jaklenec and colleagues describe how they developed the novel technique using biodegradable polymers already approved for use in humans.

The process, they reveal, involves making tiny silicone moulds – rather like ice cube trays – into which the biodegradable polymers are pressed and removed to form an array of box-like structures, each about 400 micrometres across. These are then filled with the required drug or vaccine and allowed to dry.

A lid, made from the same polymer, is then lined up on top of each micro-box and the system is briefly heated to seal it and prevent the drug or vaccine from leaking out.

When injected into the body, the boxes remain sealed until the polymer disintegrates – an event which occurs rapidly, with the timing dependant on the makeup of the polymer itself.

This post originally appears on www.theguardian.com: https://www.theguardian.com/society/2017/sep/14/multiple-time-delayed-drugs-could-be-given-in-single-injection-say-scientists

Similar stories

Delayed second dose and third doses of the Oxford-AstraZeneca vaccine lead to heightened immune response

Research on the ChAdOx1 nCoV-19, also known as the Oxford-AstraZeneca vaccine, indicates that a long interval between first and second doses does not compromise the immune response after a late second dose.

Oxford University extends COVID-19 vaccine study to children

The University of Oxford, together with three partner sites in London, Southampton and Bristol, is to launch the first study to assess the safety and immune responses in children and young adults of the ChAdOx1 nCoV-19 coronavirus vaccine.

World Health Organization experts provide guidance on use of the Oxford vaccine

WHO SAGE says Oxford's coronavirus vaccine is safe and likely to be efficacious in older adults, and recommends its use in this age group.

Oxford leads first trial investigating dosing with alternating vaccines

The Oxford Vaccine Group is to lead the first trial to explore alternating different COVID-19 vaccines, to explore the potential for flexibility in delivery and look for clues as to how to increase the breadth of protection against new virus strains.

Oxford vaccine stimulates broad antibody and T cell functions

Researchers from the University of Oxford have published further data from the Phase I/II clinical trials of the ChAdOx1 nCoV-19 coronavirus vaccine, evidencing the decision to move to a two-dose regimen in ongoing phase III trials, and how ChAdOx1 nCov-19 induces broad antibody and T cell functions.