Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Increased nasopharyngeal colonization density has been associated with pneumonia. We used experimental human pneumococcal carriage to investigate whether upper respiratory tract viral infection predisposes individuals to carriage. A total of 101 healthy subjects were screened for respiratory virus before pneumococcal intranasal challenge. Virus was associated with increased odds of colonization (75% virus positive became colonized vs. 46% virus-negative subjects; P=0.02). Nasal Factor H (FH) levels were increased in virus-positive subjects and were associated with increased colonization density. Using an in vitro epithelial model we explored the impact of increased mucosal FH in the context of coinfection. Epithelial inflammation and FH binding resulted in increased pneumococcal adherence to the epithelium. Binding was partially blocked by antibodies targeting the FH-binding protein Pneumococcal surface protein C (PspC). PspC epitope mapping revealed individuals lacked antibodies against the FH binding region. We propose that FH binding to PspC in vivo masks this binding site, enabling FH to facilitate pneumococcal/epithelial attachment during viral infection despite the presence of anti-PspC antibodies. We propose that a PspC-based vaccine lacking binding to FH could reduce pneumococcal colonization, and may have enhanced protection in those with underlying viral infection.

Original publication

DOI

10.1038/mi.2015.35

Type

Journal article

Journal

Mucosal Immunol

Publication Date

01/2016

Volume

9

Pages

56 - 67

Keywords

Adolescent, Adult, Amino Acid Sequence, Antibodies, Bacterial, Bacterial Adhesion, Bacterial Proteins, Binding Sites, Coinfection, Complement Factor H, Epitope Mapping, Female, Gene Expression Regulation, Humans, Immunity, Innate, Immunity, Mucosal, Male, Middle Aged, Molecular Sequence Data, Nasopharynx, Pneumococcal Infections, Protein Binding, Respiratory Mucosa, Respiratory Tract Infections, Streptococcus pneumoniae, Virus Diseases