Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:  Antibodies play a major role in the protection against influenza virus in human. However, the antibody level is usually short-lived and the cellular mechanisms underlying influenza virus-specific antibody response to acute infection remain unclear. METHODS:  We studied the kinetics and magnitude of influenza virus-specific B-cell and serum antibody responses in relation to virus replication during the course of influenza infection in healthy adult volunteers who were previously seronegative and experimentally infected with seasonal influenza H1N1 A/Brisbane/59/07 virus. RESULTS:  Our data demonstrated a robust expansion of the virus-specific antibody-secreting cells (ASCs) and memory B cells in the peripheral blood, which correlated with both the throat viral load and the duration of viral shedding. The ASC response was obviously detected on day 7 post-infection when the virus was completely cleared from nasal samples, and serum hemagglutination-inhibition antibodies were still undetectable. On day 28 postinfection, influenza virus-specific B cells were further identified from the circulating compartment of isotype-switched B cells. CONCLUSIONS: Virus-specific ASCs could be the earliest marker of B-cell response to a new flu virus infection, such as H7N9 in humans.

Original publication

DOI

10.1093/infdis/jit650

Type

Journal article

Journal

J Infect Dis

Publication Date

01/05/2014

Volume

209

Pages

1354 - 1361

Keywords

B cells, human challenge model, influenza A virus, Adult, Antibodies, Viral, B-Lymphocytes, Female, Humans, Influenza A Virus, H1N1 Subtype, Influenza, Human, Male, Models, Immunological, Tumor Necrosis Factor Receptor Superfamily, Member 7, Viral Load, Young Adult