Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Typhoid fever is a major global health problem, the control of which is hindered by lack of a suitable animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%-75% in typhoid-naive volunteers when ingested with sodium bicarbonate solution. METHODS: Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred (temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated. RESULTS: Two dose levels (10(3) or 10(4) colony-forming units) were required to achieve the primary objective, resulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no anti-Vi antibody responses were detected. CONCLUSIONS: Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution can be performed safely using an ambulant-model design to advance understanding of host-pathogen interactions and immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control.

Original publication




Journal article


Clin Infect Dis

Publication Date





1230 - 1240


Salmonella Typhi, controlled human infection, enteric infection, human challenge study, typhoid fever, Adolescent, Adult, Ambulatory Care, Antibodies, Bacterial, Bacteremia, Bacterial Shedding, Female, Host-Pathogen Interactions, Humans, Male, Middle Aged, Models, Immunological, Salmonella typhi, Sodium Bicarbonate, Typhoid Fever, Typhoid-Paratyphoid Vaccines